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SUMMARY 
A three-dimensional finite element method for the simulation of thermoconvective flows is presented. 
Vector-parallel performances of some preconditioned conjugate gradient methods are compared for solving 
both large linear systems and the Stokes problem. As significant examples, numerical experiments on the 
steady two- and three-dimensional Rayleigh-Benard convection at high Prandtl number are reported. 
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1 .  INTRODUCTION 

During recent years, a large number of computational methods have been proposed for the 
numerical solution of problems encountered in fluid dynamics. For three-dimensional flows, 
important difficulties occur when a large number of degrees of freedom are required to obtain 
accurate approximations of the solution fields. With regard to this major constraint, the problems 
of dynamical stability such as onset of convection, transition and chaotic dynamics have been 
investigated in three-dimensional geometries using well adapted pseudo-spectral or finite differ- 
ence methods.'-5 In this way it is possible to observe complex chaotic or non-chaotic flow 
regimes. Nevertheless, the above numerical methods, which take advantage of the use of 
structured grids, cannot be easily extended to complex industrial geometries. 

Recently, the finite element technique has emerged as a new discipline to calculate complex 
flow patterns. The great success of the finite element method is mainly attributed to its generality 
and ability to handle complex geometries of industrial  problem^.^-^ However, the main draw- 
back of the method, associated with unstructured grids, is that it is time-consuming and less 
adaptable to vectorization techniques. Nevertheless, recent improvements in supercomputer 
hardware and software permit increased possibilities of the finite element technique (vec- 
torization, parallelization). 

In the present paper a basic finite element method to solve the Navier-Stokes equations is 
improved in several ways in order to be well adapted to the architecture of the most recent 
computers. In Section 2 the basic numerical method is described. It is a fractional step method in 
time and a classical Galerkin approximation in space. The first improvement of the standard 
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method is concerned with the solution of linear systems. Several preconditionings of the iterative 
conjugate gradient method are analysed; typical economical storages of the matrices appearing in 
the algorithm are simultaneously considered. The second major improvement concerns the 
Stokes problem. A preconditioned conjugate gradient version of the Uzawa algorithm is used. 
Three preconditioners are tested and compared. Finally, the global performances of the optim- 
ized algorithm to solve the Navier-Stokes equations are presented and the capabilities of the 
corresponding programme taking advantage of parallel computer performances are underlined. 
As an example, the algorithm is applied in Section 6 to simulate typical flow patterns encountered 
in Rayleigh-BCnard convection. Two-dimensional flow configurations are first obtained and the 
results are compared with both experiments and analytical asymptotic solutions. Three-dimen- 
sional flow patterns are also obtained for typical initial and boundary conditions. The results are 
discussed and compared with experiments. 

2. BASIS OF THE NUMERICAL METHOD 

Basic equations 

Let us consider a Newtonian fluid flow in a domain Q of boundary r, governed by the standard 
conservation equations for mass, momentum and energy. These equations are simplified using the 
classical Boussinesq approximations, such that a linear relation between temperature and density 
may be assumed and all density variations may be neglected except in the buoyancy force term of 
the momentum equation. Such an approximation is usually justified for both gases and liquids if 
small temperature variations are considered (for more details see References 10-12). 

Let us denote by p, u and T the pressure, velocity and temperature fields respectively, and 
introduce L, U ,  TI - To and po as length, velocity, temperature and density scales respectively; the 
set of dimensionless governing equations is then 

au 1 Gr 
a t  Re Re2 
- + (U * V)U - - V’U -~ TZ + Vp = 0, 

V’T=O,  
a T  1 
- + ( U  * V) T - -  
a t  Re Pr 

where Re, Gr and Pr are the classical Reynolds, Grashof and Prandtl numbers respectively and 
z denotes the unit vector in the vertical direction. Equations (1) are solved in a domain Q with 
suitable initial and boundary conditions on r. 

Note that the introduction of the velocity scale U allows the consideration of both free and 
forced convection; for the buoyancy-driven flows considered here, U was chosen such that 
Gr = Re2. 

Time discretization 

For three space dimensions the time discretization is a crucial point of the solution method. 
On the one hand, a fully implicit formulation may be used (see e.g. Reference 6) which takes 
advantage of the unconditional stability of the numerical solution field; consequently, an iterative 
method is required in order to solve the non-linear equations deduced from the discretization. 
Unfortunately, the convergence rate of such an iterative method is strongly related to the 
preconditioning method used. In advection-dominated flows an efficient preconditioning is 
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obtained when a quite 'small' value of the time step is used, increasing the influence of the identity 
operator. Then, the advantage of the implicit method is somewhat reduced. A similar problem 
arises when satisfying the continuity constraint. 

On the other hand, explicit Euler schemes (see e.g. Reference 13) lead to very stringent stability 
conditions on the time step, more particularly connected to the spatial discretization. Moreover, 
the finite element spatial discretization requires a mass-lumping technique to simplify linear 
system solutions and the continuity constraint cannot be solved explicitly. 

In the present paper the applied fractional step time discretization is of a semi-implicit type and 
has a truncation time error O(At2). At time t + A t ,  u(t+At) ,  p ( t + A t )  and T ( t + A t )  (denoted by 
u"", p"+l and Tn+') are obtained from u ( t ) , p ( t )  and T(t) (i.e. u", p" and T") through the 
following three time steps. 

Step 1 

4 1 
At  3RePr 

T"+-  V 2  T" p+ 114 _- 2 v 2 Tn + 114 + (,,n + 114 . V) T"+ 1/4 = - 4 
At 3 Re Pr 
- 

Step 2 

- ,,"+ 3/4 - __ 1 v 2 , , n +  314 + (un + 1/4. v) ,,n + 314 Gr Tn+ 3/4z 2 
At 3 Re Re2 

- i?lUn+1/4 ; 2 ~ 2 ~ n + 1 / 4 + v ~ n + 1 / 4  - 
At 3 Re 

Step 3 

In Steps 1 and 3 the velocity and pressure fields (u"+ll4, p"+'l4 ) and (u"", p"") are solutions 
of standard Stokes problems. In the momentum equations the advection and buoyancy force 
terms are in explicit form. In contrast, the advection term in the temperature equation is fully 
implicit. In Step 2 the advection term of the temperature equation is explicit while that of the 
momentum equation is semi-implicit. Two main features of the scheme may be emphasized. First, 
a wide range of efficient methods for solving the Stokes problems are available. Secondly, the 
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discretized equations are linear and widely decoupled (only connected by the divergence 
condition), so the discrete spatial approximation will directly lead to linear system solutions. The 
main deficiency of the time discretization is the fact that the stability condition induced by the 
explicit contributions is not known exactly (even in the continuous case). Consequently, the 
stability of the numerical solution has to be verified during the computation. In practice, an 
adaptive time step obtained from the estimation of the truncation time error of the solution is 
incorporated in the algorithm. 

Finite element discretization 

In Steps 1 and 3 (equations (2a) and (2c)) the set of coupled equations governing the velocity 
and pressure fields may be written in the following form: 

4 

(3) 
4 2 

a u - v V 2 u + V p  = f  
V * u = O  with a=-, v=-. 

3 Re 
ulr =g I A t  

Using a weak formulation and imposing the integral continuity condition f g - n d r  = 0, a well- 
posed problem can be obtained in Hilbert space ( H , ( Q ) ) 3  x &(a) for the pair (u, p).14 It is also 
known from the works of Babuika” and Brezzil6 that the discrete formulation of this problem 
imposes the so-called inf-sup condition to the discrete solution spaces x,, x M h  for the velocity 
and pressure fields. A wide range of spaces are available and a lot of them can be found in 
References 14 and 17. 

Here the so-called P,-P, is0 P2 approximation’* is chosen: the discrete pressure ph is piecewise 
linear and continuous on a standard coarse mesh z,,, and the discrete velocity uh is also piecewise 
linear and continuous, but on a refined mesh &,/2 obtained from 2, by dividing each tetrahedron 
into eight subtetrahedrons (see Figure 1). In the following, nh and n h / 2  denote the number of nodes 
of 2, and &,2 respectively. The approximation spaces are thus defined by 

M h  = { q h  (n); q h  Pl ( et 1 2  vei 2 h } ,  (44  

X h = { V h E ( C 0 ( R ) ) 3 ;  v h E ( P l ( e t / d ) 3 9  Vet/2Ezh/2 ; vh(r = g}* (4b) 
Compared to the very closed P,-P, approximation (where P h  is similarly discretized and 

uh piecewise quadratic and continuous on &-tetrahedrons with 10 nodes), the P,-P, is0 Pt 
approximation leads both to simpler integrations on the tetrahedrons and to sparser matrices. 
Another advantage is its easy implementation, especially in the three-dimensional case. It may 
also be noticed that geometrical information on the refined mesh is easily deduced from the 
coarse one. 

The global forms of the coupled finite element equations are derived from the Galerkin residual 
method, and the discrete Stokes problems become 

find (Ut’, p f ’ ) E x h  X M h  such that 

@(uf’, vh),ri + v(vuf’ ,  v v h ) , r z  + ( v p f ) ,  v h ) , r z  = (ff’, vh) , r i ,  V v h E X O h ,  ( 5 )  
( v .  ,,(i) 

h 7 qh)L2  = O, V q h E M O h ,  

Figure 1. The PI and P,  is0 P2 elements 
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where 

i={ n + 114, 
n +  1, M O h  = M h  Lg(fi) ,  

x O h = { v h E ( c 0 ( f i ) ) 3 ;  v h E ( P l ( e ~ / 2 ) ) 3 , v e ~ / z E 2 h / 2 ;  v h , ,  = O } .  (6b) 
The same procedure applied to the temperature leads to the final form of discretized equations 

find T ~ ) E  Yh such that 

where 

i={ n +  1/4, 
n, 

Y O h = { S h E C o ( f i ) ;  sh~Pl(ek12), Vek/,~%,/,; sh,,, = 0; 8sh /dn l , ,  = 01, 
r+r2 = r 

and b f )  is the right-hand-side term of the temperature equation. 
The discrete formulation of Step 2 is deduced in the same manner as in (7), and one has 

find u ; : + ~ / ~ E X , ,  such that 

Equations (7H9) lead to one linear system for each equation and each primitive variable. 

3. PERFORMANCES O F  SOME CONJUGATE GRADIENT METHODS APPLIED TO 
LINEAR SYSTEM SOLUTIONS 

The finite element formulation used here leads to a great number of linear systems of the common 
form Ax = b, where A is a large sparse matrix; indeed, the average number of non-zero elements in 
a row of A (which is the average number of neighbours of a node) is small (about 15 in the present 
test cases). Consequently, a packed storage of A which increases linearly with nh (nh i2 )  can be used. 
The matrices issued from the discretization of the time derivative and diffusion operators are 
symmetric and positive definite. Considering Step 2 of equations (2aH2c), it appears also that the 
unsymmetric matrices including the advection term are non-singular. 

An important problem is the choice of the solution method. A direct solution, such as 
lowerdiagonal-upper factorization followed by forward elimination and back substitution is 
clearly not realistic since it requires the storage of a large number of elements owing to the fact 
that non-zero elements are created in the bandwidth of a row during the factorization. In this 
case, classical band or skyline forms lead to a very large storage requirement increasing non- 
linearly with nh ( nh/, )  and rapidly exceeding available computer capacities. In addition, it is 
known that effects of round-off errors tend to increase strongly with an increasing number of 
unknown. Here iterative solution methods are considered; the conjugate gradient method 
implemented appears to have good convergence properties and can be accelerated by means of 
convenient preconditioning. 
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Symmetric linear system solutions 

First, considering a symmetric and positive definite matrix A and introducing a precondi- 
tioning matrix S which is symmetric and positive definite close to A, the problem of solving Ax = b 
is equivalent to the following minimization problem: 

where 

which can be solved by a conjugate gradient method used here as a variant of the original 
Hesteness-Stiefe12’ algorithm proposed by Takahasi and Nodera.2 

It is demonstrated that the algorithm converges in less that nh (nh,J iterations; in practice, 
owing to round-off errors, the directions hi are not exactly conjugate so that convergence cannot 
be obtained in nh (nhI2)  iterations. However, one can show that there always exists an initial 
residual vector go such that the algorithm is stable in terms of round-off error propagation.20 

The main point is the fact that the convergence properties of conjugate gradient algorithms are 
strongly related to the conditioning of the matrix S-1 /2TAS-1 /2  or, similarly, to the choice of the 
preconditioning matrix S: the closer S is to A, the better is the convergence. 

Many choices can be found in the literature. The best choice in terms of convergence rate seems 
to be the incomplete Cholesky factorization ‘by value’ (i.e. during the factorization keeping only 
elements exceeding a small given value, as in e.g. Reference 22). Nevertheless, for such a choice the 
storage requirement becomes non-linearly dependent on the number of nodes of the mesh. 

In the present paper, two different preconditionings were implemented. On scalar computers 
an incomplete lower triangulardiagonal-upper triangular factorization by position (S = LDLT; 
only non-zero elements in the initial matrix A are kept in L) was used. Consequently, storage 
requirements increase linearly with nh ( nhI2)  but the convergence rate is slightly dependent on 
nh (nhi2) .  Recurrences appearing in such a method do not lead to any problem because the cost of 
a matrix product is somewhat similar to the cost of a forward elimination-back substitution. On 
parallel-vector computers it is well known that they inhibit both parallelization and vectorization 
in such a way that no improvements in the CPU cost can be obtained for either factorization or 
forward elimination-back substitution. More vectorizable variants were proposed, especially by 
Van Der V ~ r s t ~ ~  and Axel~son.~’ Both assume that the same matrix is used for several solutions 
of linear systems and consequently the L D L T  (or similar) factorization may be done once and for 
all. In this paper, matrices are different from one step to the next since variable At and semi- 
implicit discretization of the advection terms are used. Note that the present programme is also 
applied to solve problems with variable viscosity.’. 24 

Dubois et aLt5 proposed using a truncated Neumann series of A-’  as preconditioner for A. In 
the present approach the diagonal preconditioning was first introduced. Since A > 0, then D > 0 
and D-1/2 exists. The initial problem may then be expressed as 

D- 1/2AD- 1/2u= D- 1/2b, with = D - 1 / 2 ~ .  (13) 
It is clear that A ‘ = D -  1 / 2 A D -  is symmetric and positive definite; consequently a conjugate 
gradient algorithm may be used in order to solve the equivalent problem. If S’ is a symmetric, 
positive definite matrix close to A‘, then the algorithm is as follows: 

E and xo given: 

i: = 0; h,: = 0; 
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u0: = D1/’xO; 

xi=D-’/’ui . (14) I 
D-l12 and A‘ are easily computed from A; moreover, such calculations are fully vectorizable 

and parallelizable. Note that the trivial choice S-’ =I corresponds also to the zero order of the 
truncated Neumann series of A’- l .  In the following, this preconditioner is denoted S, Then 
one introduces the truncated Neumann series of A’- ’: 

i = p  

i = O  
Si1 = 1 [-D-1/Z(L+LT)D-112]i. 

Unfortunately, the discrete identity operator in three dimensions is not diagonally dominant. It 
follows that in our case S;’ is not necessarily positive definite; more precisely, odd orders of 
truncation are usually not positive definite while even orders are. Introducing n > 0 so that 
p = 2n, then S,’ may be a preconditioner of A’. As in Reference 25, S,’ is never stored and each 
iteration requires 2n + 1 matrix-vector products. Then the number of required iterations must be 
reduced by a factor 2n + 1 to get a better CPU cost than for the zero order. 

Storage of S,’ is not convenient, even for n = 1, since it is largely less sparse than the initial 
matrix A owing to fill-in entries during the matrix products. Moreover, since S,’ contains many 
more elements than A, the product of it by any vector is more expensive than those by A so that 
the possibility of any improvements in CPU cost is not clearly evident. Lastly, the CPU cost 
would have to include the computation of S;’. 

In order to provide a new preconditioner, we introduce the matrix D, defined as the diagonal 
part of [D-1/2(L+LT)D-112]2. The operator 

is symmetric and positive definite. Note that it is obtained from an approximation of the second- 
order truncated Neumann series of A’-112. D, is easily computed from its definition and induces 
a small increase in storage requirement. S;: requires three matrix-vector products per iteration 
(as S i l )  and includes some terms of third and fourth order. 
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Benchmark tests were performed on a four-processor vector-parallel computer (Alliant FX 80) 
using automatic microtasking. The test case studied here deals with natural convection inside a 
cubic box (dimensionless width unity) where vertical boundaries (x =0, 1) are differentially heated 
(T=0-5 at x=O, T= -0.5 at x= 1)  while other boundaries are adiabatic; no-slip conditions are 
imposed on all boundaries. The Grashof number is chosen sufficiently high so that advection 
terms are not too small compared with diffusive terms: Gr = Re2 = lo4. The initial field is zero 
for all variables. The grids used contain 1 1 3  nodes for pressure and 213 nodes for velocity and 
temperature. To minimize the calculation time, the number of steps in time is limited to 10 for a 
dimensionless step size of unity. 

The first test (Table I) deals with the performance of the preconditioners mentioned above on 
the vector-parallel computer for the solutions of symmetric linear systems appearing in each time 
iteration of the programme. All preconditioners are compared with the case of no precondi- 
tioning, which is chosen as the reference. Comparisons are provided for the convergence rate 
(i.e the number of required iterations for all the symmetric linear systems having to be solved 
during each step in time) and for the CPU time, using all the vectorization and parallelization 
possibilities of the computer. 

The best results are given by the diagonal preconditioner (S; ' ). Table I clearly shows that 
improvement of the convergence rate for S; and S; ' is not sufficient. S,: appears to be a better 
preconditioner but also has lower performances than the diagonal preconditioner. This result is 
also related to the greater number of matrix-vector products required. Specifically, the better 
performance of S;: with respect to S; ' is due to the fact that the convergence rate improvement 
is better for the non-diagonally dominant matrices used here (essentially pressure matrices) while 
it is somewhat similar for the others (velocity and temperature matrices, in the test case here, with 
respect to the Reynolds and Peclet number chosen). 

Unsymmetrical linear system solutions 

initial problem 

is replaced by the equivalent one 

In the case of unsymmetric matrices a biconjugate gradient algorithmz6 was implemented. The 

(17) find x such that A x  = b 

find X such that % X  = B, where % = [;,T ;'I, x=(:), I?=(;:: ;), (18) 

for any y and c, with A' = D - ' A .  
CU is symmetric but not positive definite, so a conjugate gradient algorithm may be applied in 

order to solve (18), but owing to the indefiniteness of %, one cannot strictly ensure the 

Table I. Symmetric linear system solution. Benchmark test. Conver- 
gence and CPU rate are given by reference to the standard algorithm 

without preconditioning 

Preconditioner Convergence rate CPU rate 

No preconditioner 1 1 
Neumann p = 0 0 .37W897 0.784 
Neumann p = 2 0.365-0.503 1-17 
Neumann p = 4 0.2774454 1.46 
D2 03304.538 0.98 1 
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convergence of iterations. Let S be an unsymmetric matrix close to A;  the conjugate gradient 
method applied to (18) leads to 

E and x o  given: 

i : =  0; ho:= hb:= 0; i 
gb:= go:= D - ' ~ - A ' x , ;  

i : =  i +  1; { 

1 
hiTA'hi + hTAITh; ' Ai: = 

Note that the sequence yo, y,, . . . , yi, . . . is not computed. The free vectors yo and c are 
classically chosen such that 

The main deficiency of the biconjugate gradient algorithm is that it often degenerates. A classical 
way to ensure convergence is then to reinitialize the algorithm as often as required, the number of 
reinitializations being strongly dependent on the preconditioning used. In the present calcu- 
lations the algorithm is always convergent but requires some reinitialization steps. Tests similar 
to those of the preceding section for symmetric matrices were done; results are given in Table 11. 
The best results are given by the diagonal preconditioner, as in the symmetric case. Note also that 
S,: gives a worse convergence rate and CPU cost than S;' and clearly does not constitute a 
good approach in the case of unsymmetric matrices. 

gb = gO*c-A'Tyo = b-A'xO. (20) 

Table 11. Unsymmetrical linear system solution. Benchmark test. 
Convergence and CPU rate are given by reference to the standard 

algorithm without preconditioning 

Preconditioner Convergence rate CPU rate 

No preconditioner 1 1 

Neumann p = 2 0.3314413 1 a4 
Neumann p = 4 0.1964256 1.12 

Neumann p = O  0.6014751 0724 

D2 0.3434375 1.05 
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4. PERFORMANCES OF SOME CONJUGATE GRADIENT METHODS APPLIED TO 
THE STOKES PROBLEM 

As mentioned above, some classical methods can be applied to the solution of the Stokes 
problem. At the present time a preconditioned conjugate gradient version of the Uzawa 
algorithm is used. 

Let us recall that the discrete formulation of the Stokes problem is 

The operator L = BA- ’ BT is symmetric, positive definite and c o n t i n u o ~ s ; ~ ~  nevertheless, 
since it is defined via A- ’, it is only implicitly known and (24) must be solved through an iterative 
process. Since L has all the required properties, a conjugate gradient algorithm may be used. 
Moreover, as in the preceding sections, improvement of the convergence rate is obtained by 
introducing a preconditioning operator C- ’ close to L-’ .  The conjugate gradient algorithm is as 
follows: 

p i o )  and E given: 

i : =  0 ;  hip': = 0; q p  = 0; 

solve: a(uio’,vh) = (f, v,)-b(vh,pi”), VVhEXh; 
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i:= i +  1; i 
y"-" :  = (sf- '), 1 q f - l ' ) ;  

solve: (CqE), v t h ) =  - b ( X f ) ,  t h ) ?  VthEMh . (24)  11 
Note that at each iteration the method requires the solution of a linear system of order nh/2  for 

each component of the velocity field (or their associated direction vectors x f ) )  and at least two 
linear systems of order n h  for the pressure (i.e. its direction vectors qf)) .  Each linear system is 
solved via the method presented in the preceding section. 

Recently, using a Fourier analysis in a continuous approach, Cahouet and Chabard2* 
proposed the following preconditioning operator: 

C;' = V I ~ ' - U A ~ ' ,  (27) 

where I,, and Ah are respectively the discrete identity and Laplacian operators defined on M,. 
C; ' has all the required properties to be a preconditioning operator of L. The two parts of C ; 
are easily computed once and for all and the preconditioning method requires only two linear 
system solutions on the coarser grid at each conjugate gradient iteration. A great improvement of 
the convergence rate is obtained while the cost of preconditioning is low. Nevertheless, the 
introduction of the Laplacian operator leads one, via a weak formulation, to impose boundary 
conditions on qf) ,  which are unknown. Classical Neumann boundary conditions are con- 
sequently imposed, but this can lead to an ill-conditioned problem. 

In order to avoid any problems of ill-conditioning, a discrete approximation of L -  ' was tested. 
Writing 

L - ~ = B - ~ A B - ~ T  = B-'(O!Ihp - VAh,2)B-lT 

one can obtain a class of preconditioning operators by approximating the inverse of the operators 
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I,/, and Ah/ ,  by truncated Neumann series. Besides, as mentioned earlier, only even orders of the 
truncated Neumann series, which lead to positive definite operators, may be considered; 
moreover, the higher the order of truncation, the fuller is the corresponding matrix, so the present 
tests are restricted to the zero order-an inverse diagonal matrix for the first operator and an 
identity operator (on M h ,  as in the Cahouet-Chabard'* approach) for the second: 

c;' = a(BD{Ihiz} - 'BT)-'  + v I , ' .  (29) 
As with C, , C2 can be computed once and for all. Storage requirement is more important owing 
to fill-in entries during the two products of the inverse diagonal by B and BT; but since C, is 
defined on the coarser grid, the storage requirement is of the order of those for A. Note that B, 
being calculated once and for all, is also used to compute the integrals of pressure gradient and 
velocity divergence, so that a great gain in the CPU cost is obtained. A first improvement of C, 
can be obtained by considering BD { Ah/ ,  } - ' BT rather than I,, but this leads to storing a second 
matrix, and this possibility was not implemented here. Instead, we tested a preconditioning 
operator C3 obtained by a direct calculation from A: 

C;' = (BD{A}- 'BT)- ' .  (30) 
C, requires no more storage than C, but becomes dependent on a and v and must consequently 
be computed at each time step if a and v are not constant. However, the computation of C, can be 
vectorized and parallelized and is not too expensive. Moreover, such a preconditioning operator 
will be well adapted to simulations with variable local viscosity or unsymmetric Stokes problems. 

Benchmark tests were done similarly to those in Section 3 and results are shown in Table 111. 
All results are given referring to the case without preconditioning. C, gives the best convergence 
rate; nevertheless, the CPU costs are very close for each preconditioning operator owing to the 
fact that matrix-vector products are more expensive for C, and C, since they are fuller than C,. 
Moreover, the computation of C3 at each time step is included in the CPU cost mentioned in the 
table. 

5. GLOBAL PERFORMANCES OF THE PROGRAMME USING VECTOR PARALLEL 
OPTIMIZATION 

Codes are often characterized by the CPU time and the memory space required per iteration in 
time and per node of the grid. In the preceding test case, using the C2 preconditioning operator 
for the Stokes problem and the diagonal preconditioning for linear system solutions, a character- 
istic CPU time of 2.27 x 10- , s per iteration and per node of &,/, (with four degrees of freedom on 
each node of 2 h / 2  and one for 2,) was obtained on the Alliant FX80 four processors. The storage 
requirement is 7.23 x lop4 Mbytes per node of % h / ,  in single precision. Since the storage 
requirement increases linearly with nh ( n h / , ) ,  it represents effectively a characteristic of the 

Table 111. Comparison of preconditioning methods for the Stokes 
problem 

Preconditioner Convergence rate CPU rate 

No preconditioner 
c ,  
c2 

c3 

1 1 
0.34 0.388 
0.272 0.3 17 
0.236 0.319 



SIMULATION OF 3D THERMOCONVECTIVE FLOWS 94 1 

programme. On the contrary, a few remarks may be given about the CPU time. Firstly, the 
intrinsic CPU time is strongly dependent on the computer hardware and software abilities. 
Secondly, the CPU time is non-linearly dependent on nh: indeed, on the one hand the convergence 
rate of the preconditioned conjugate gradient algorithm is dependent on q, and on the other hand 
the unknown stability condition on A t  induces a relation between convergence in time and n,,. 

A more relevant characteristic of the programme is its ability to take advantage of vectorized 
and parallelized computations. Table IV gives such performances for the test case of the 
preceding section. Results are given for the whole code successively considering global optimiza- 
tion (which can be provided on any scalar computer), vectorization only (one processor) and 
parallel computing with two and four processors. All results are given referring to the case of 
global optimization. For a better understanding, results are also given separately for linear system 
solutions, matrix assembly and right-hand-side terms assembly. Linear system solutions, consti- 
tuting presently the more optimized part of the programme, have very high performances since 
the CPU time is divided by a factor of more than 10 (note that vectorization is also efficient for 
these computations). This is due to the fact that only products are done on the matrices. Note also 
that they are completely stored by row without any symmetry consideration in order to obtain 
parallel computation of each row. The matrix assembly was less optimized, only local modifica- 
tions being done in the code. No improvement is obtained by vectorization while some is by 
parallelization. The right-hand-side terms assembly is not presently optimized except for the 
pressure and divergence terms (which use the B and BT matrices). Thus this explains why the 
results are better when using vectorization and less conclusive when using parallelization. 

At this stage of the work it is not possible to know exactly how the number of grid nodes will 
affect the performances of the schemes given above. Further calculations are presently being done 
in order to investigate more precisely the influence of greater concentrations of nodes (up to 
64000 grid nodes at the present time) and will be presented in a future paper. Vector-parallel 
performances would not be strongly affected since the techniques used are essentially dependent 
on the hardware and software abilities of the computer. On the contrary, as already mentioned, 
the convergence properties of the time scheme and the conjugate gradient methods depend on n h ,  

so that the loss of performance with an increasing number of nodes has to be estimated to confirm 
the practical usefulness of the approach. 

Table IV. Programme performances 

Linear 
Whole system Matrix Right-hand-side 

Programme solution assembly terms assembly 

Global 

1 processor 
optimization 1 1 1 

Vectorization 
1 processor 

Vectorization 
2 processors 

Vectorization 
4 processors 

0.457 

0.261 

0.329 

0.178 

0.927 

0.543 

0.157 09993 0.3 18 

1 

0.6 13 

0.402 

0.298 
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6. EXAMPLE: RAYLEIGH-BENARD CONVECTION AT HIGH PRANDTL NUMBER 

As a check of the validity of our approach, simulations of the so-called Rayleigh-BCnard 
convection were performed. The test case concerns a thin horizontal layer of fluid confined 
between two plates and heated from below. It is well known that when the Rayleigh number Ra 
(characteristic of the temperature difference between the two horizontal boundaries) exceeds a 
critical value Ra, (Ra, = 1708 for Pr > l), the flow bifurcates from the static state to a two- 
dimensional behaviour in the form of parallel rolls. These rolls are stable until a new critical value 
Ra, is reached. This last value as well as the configuration of the flow appearing after this 
threshold are strongly dependent on the Prandtl number. For small values of Pr a periodic 
motion takes place, while a steady three-dimensional behaviour is encountered for high values. 
For the present calculations the studies are limited to high-Prandtl-number fluids for which 
spatially periodic steady flows may be reached. 

Two-dimensional flows 

Just above the onset, supercritical convection in large rectangular boxes consists essentially of 
two-dimensional straight rolls (circular rolls in circular boxes) of wavelength I, % 2 h, where h is 
the distance between the two horizontal plates. Such rolls are commonly observed experi- 
mentally.29-31. Note, however, as a consequence of imperfect boundary conditions, the diameter 
of the rolls often increases with Ra in experiments. Recent investigations of Kirchatz and Oerte13* 
show that such a change does not occur in numerical simulations as long as perfectly conductive 
horizontal walls are simulated. Consequently, it seems that the modification of the diameter of the 
rolls is essentially related to the finite conductivity of the walls or to the thermal dependence of the 
fluid properties. 

In the present calculations we tried to reproduce the flow inside a cubic box of dimensionless 
width unity, with no-slip conditions and given temperature on the horizontal boundaries and 
free-slip and adiabatic conditions on the vertical ones. The value of the Prandtl number is 930 (see 
the work of Dubois and Bergk discussed later). Since the static state with a purely conduction field 
is still a mathematical solution of the problem when Ra > Ra,, the first flow (Ra = 2700) was 
obtained by introducing a small perturbation (of order 1%) in the temperature distribution. 
Afterwards the converged flow fields were obtained for increasing Rayleigh number values using 
the preceding state. The grids used contain 113 nodes for the pressure and 213 nodes for the 
velocity and the temperature. 

An important characteristic of the convection in the box is the Nusselt number Nu, which 
represents the heat exchange between the two horizontal plates. Accurate measurements of it 
were made by Koschmieder and pal la^^^ for a circular high-Prandtl-number fluid layer in the 
domain of roll stability. As previously predicted by Schluter et via a perturbation analysis 
and by Busse3’ via a spectral method in the case of infinite Prandtl number, a change in the slope 
of the Nusselt number indicates the appearance of convection when Ra increases up to Ra, 
( N u  = 1 for Ra < Ra,). Moreover, for sufficiently high Pr the Nusselt number becomes indepen- 
dent of it. Comparisons between the two preceding results and ours are given in Figure 2. Note 
that the two numerical investigations overestimate the heat transfer; this is clearly due firstly to 
the geometric differences between experiments (circular box) and computations (rectangular box) 
and secondly to the modification of the roll diameter (13 to 10 rolls) during the experiments. 

They corroborate the studies of Busse which predict that the velocity field is essentially governed 
by the first three spatial modes (I,, &/2, Ic/3) increasing as powers of the reduced variable 
& = ( R a  - RaJRa,  (in the range of stability of the rolls, 0 < E < 12). Dubois and Bergk provided 

More local measurements concerning the velocity field were done by Dubois and 
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results for the first three modes in the x-horizontal direction. Applying a Fourier decomposition 
in the x-direction to the components of the velocity field u and w in the x- and z-direction 
respectively, 

(3 1 4  

(3W 

u(x, z) = u~'~(z)sin(a,x)+u~2~(z)sin(2a,x)+u~3~(z)sin(3a,x)+ . . . , 
w(x, z) = w('~(z)cos(u,x)+ w ( ~ ) ( z ) c o s ( ~ ~ , ~ ) +  w ( ~ ) ( z ) c o s ( ~ ~ , ~ ) +  . . . , 

where a, is the critical wave number ( a , x n ) ,  they found that 

Trigonometric functions were also used by Busse for his spectral approach in both the x- and 
z-directions for the temperature field and in the x-direction for the velocity field. Dependence in 
the z-direction was described by a particular set of hyperbolic functions. 

The present results are shown in Figures 3 and 4 and compared with the works of Dubois and 
Berge. The results obtained at y = 0 are slightly different from those at y = 0.5 since the mesh has 
no two-dimensional symmetry. This small deviation can be seen as a measurement of the 
programme accuracy. Nevertheless, note that the differences are sensitive only for low E, where 
wg:x represents only a few per cent of the whole velocity. 

Three-dimensional Jlo ws 

Two kinds of steady three-dimensional convection are presently known to occur in 
Rayleigh-Benard convection of a high-Prandtl-number fluid. The first one is the so-called 
bimodal convection, appearing when Ra exceeds the critical value of 22600, according to the 

' T  

0 10 20 
I 

Figure 2. Nusselt number versus E = Ra/Ra, - 1 : + , present calculations, Pr =930, rectangular box; 0 ,  Busse calcu- 
lations Pr = + a, rectangular box; W ,  Koschmieder and Pallas measurements, Pr = 5 11, circular box 

O" i 

0.01 - 
1 10 

E 

Figure 3. First mode of the vertical component of the velocity, wtAx, versus E ,  Pr=930: +, present calculations, y = O ;  
0 ,  present calculations, y =05;  W , Dubois and Bergk measurements 
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stability theory of B ~ s s e ~ ~  ( E  = 12.2). From the original roll pattern of wavelength I , ,  new rolls of 
wavelength I ,  #I, appear at right angles to the first ones. Experimental observations of this can 
be found in Reference 37. Previous calculations of Frick et ~ 1 . ~ '  have shown that a range of I2 
exists (dependent on both I ,  and Ra) where bimodal convection is stable. Experimentally, a 
preferred value of 1, is observed and decreases with increasing Rayleigh number.39 Nevertheless, 
such a value is strongly related to the conductivity of the horizontal walls and the thermal 
dependence of the physical properties of the fluid. Here calculations were performed for only one 
value of 1, (I, = 1.4), close to the critical wavelength, permitting comparisons with the works of 
Frick et al. The present computations were done in a box of 213 nodes whose dimensions are 
0 <x < 1,0  < y G07,O < z < 1. Three-dimensionality is initiated by a small perturbation of the 
temperature field in the y-direction (1 % of A T). Calculations were performed for 10 < E < 50. The 
change in the slope of the Nusselt number (see Figure 5 )  is smoother than for the onset of 
convection and does not permit the estimation of the second critical Rayleigh number Ra, with 
sufficient accuracy. Results from Frick et al. are also given for different values of 1,. Calculations 
were not performed for higher values of Ra since, on the one hand, smaller wavelengths than 
described by the mesh would have to be taken into account and, on the other hand, bifurcations 
to periodic motions would occur and these do not agree with the present boundary conditions. 

Another kind of three-dimensional motion is presently of interest. Theoretical and numerical 
works of Busse and Riahi,40 Proctor4' and Jenkins and Proctor4, show that a new pattern, called 
the square pattern convection, the form of two right-angle rolls of the same wavelength, can be 
stable above the threshold in the case of small conductive horizontal boundaries. More recently, 

*,0001 I 
1 10 

E 

Figure 4. Third mode of the vertical component of the velocity, w:!., versus E, Pr=930: *, present calculatios, y=O; 
0 ,  present calculations, y =0.5; , Dubois and Berge measurements 

I 

0 25  50 
E 

Figure 5. Nusselt number versus E :  +, present calculations, P r  = 930, roll pattern; 0 ,  Busse calculations, Pr = + 00, roll 
pattern; m, present calculations, Pr =930, bimodal convection, I ,  = 1.4; 0, Frick et al. calculations, Pr = + 03, bimodal 

convection, A, = 1.57; A ,  Frick et al. calculations, Pr = + m, bimodal convection, I ,  = 1.256 
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M J 2  I 
1.5 

0 1.5 3 
t 

0 1.5 3 

Figure 6. Present calculations. Comparison of Nusselt numbers versus E for: 0 ,  the square pattern; + , the roll pattern 

the experimental study of Le Gal et shows that square pattern convection occurs just above 
the onset even if the conductivity is large (but finite). The present computations were done in the 
same cubic box as for the two-dimensional flows with the same boundary conditions. The initial 
field for Ra = 2700 was the static state, perturbed by a small three-dimensional deviation on the 
temperature field (2% of AT) of dimensionless wavelength Ax = I ,  = 2, symmetric with respect to 
the x- and y-directions. Afterwards, fields were obtained from the preceding solutions at lower 
Rayleigh number. As pointed out by Frick et at., heat exchange resulting from square pattern 
convection is not related to its stability; Figure 6 gives the Nusselt number versus E for both roll 
(Nu,) and square (Nu,) patterns. Nu, is lower than Nu, for E -= 1.5 and greater for E > 1.5, while 
the square pattern is always found to be unstable for this range of E. Since the square pattern is 
unstable at such Rayleigh numbers for the assumed infinite value of the horizontal wall 
conductivity, it was difficult to obtain a square pattern steady state. For E > 1.5, several runs were 
done where the flow bifurcated to the roll pattern when too large time steps were used. The fact 
that the square pattern can numerically be found to be more stable for small values of E seems to 
corroborate the idea that the square pattern is only weakly unstable near the threshold. 

7. CONCLUSIONS 

The ability of a finite element fractional step method to take advantage of vector-parallel 
computations has been studied. The efficiency of the method is mainly related to the efficiency of 
the preconditioned conjugate gradient method which is applied to solve both the large linear 
systems and the continuity constraint. Different approaches have been tested and new pre- 
conditioning operators have been introduced to improve the convergence rate of the conjugate 
gradient version of the Uzawa algorithm. The proposed improvements can be conveniently 
applied to more complex problems, including variable time steps or variable diffusivity. Further 
developments are still under way to improve not only the convergence and CPU rate for linear 
system solutions but also the parallelization of matrices and right-hand-side teims assembly. 

The accuracy of the code has also been examined in typical thermoconvective flows. The results 
concerning the Rayleigh-Btnard convection in an infinite layer of fluid are in good agreement 
with the literature from the point of view of both the global (heat exchange between the two 
horizontal walls) and local (Fourier decomposition in the horizontal directions) description of the 
flows. Further calculations taking into account the finite conductivity of the walls are presently 
being carried out. 
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